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abstract

A Method for Reconstructing Historical Destructive Earthquakes Using Bayesian Inference

Hayden J. Ringer
Department of Mathematics, BYU

Master of Science

Seismic hazard analysis is concerned with estimating risk to human populations due to
earthquakes and the other natural disasters that they cause. In many parts of the world,
earthquake-generated tsunamis are especially dangerous. Assessing the risk for seismic dis-
asters relies on historical data that indicate which fault zones are capable of supporting
significant earthquakes. Due to the nature of geologic time scales, the era of seismological
data collection with modern instruments has captured only a part of the Earth’s seismic hot
zones. However, non-instrumental records, such as anecdotal accounts in newspapers, per-
sonal journals, or oral tradition, provide limited information on earthquakes that occurred
before the modern era.

Here, we introduce a method for reconstructing the source earthquakes of historical
tsunamis based on anecdotal accounts. We frame the reconstruction task as a Bayesian
inference problem by making a probabilistic interpretation of the anecdotal records. Utiliz-
ing robust models for simulating earthquakes and tsunamis provided by the software pack-
age GeoClaw, we implement a Metropolis-Hastings sampler for the posterior distribution on
source earthquake parameters. In this work, we present our analysis of the 1852 Banda Arc
earthquake and tsunami as a case study for the method.

Our method is implemented as a Python package, which we call tsunamibayes. It is
available, open-source, on GitHub: https://github.com/jwp37/tsunamibayes.

Keywords: Bayesian statistics, Markov chain Monte Carlo, inverse problems, earthquakes,
tsunamis, seismic hazard analysis

https://github.com/jwp37/tsunamibayes
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Chapter 1. Introduction

Indonesia is one of the most tectonically active and densely populated places on Earth. It

is surrounded by subduction zones that accommodate the convergence of three of Earth’s

largest plates. Some of the largest earthquakes, tsunamis and volcanic eruptions known in

world history happened in Indonesia [1, 2]. Since these events, population and urbanization

has increased exponentially in areas formerly destroyed by past geophysical hazards. Re-

currence of some of these large events during the past two decades have claimed a quarter

million lives [2].

Most casualties from natural disasters in Indonesia are caused by tsunamis, which, over

the past 400 years, occur on average every 3 years [3]. Many potential tsunami source areas,

such as the eastern Sunda [4] and Banda [5] subduction zones have no recorded mega-thrust

earthquakes [6]. However, some historical accounts of earthquakes and tsunamis in Indonesia

provide enough detail about wave arrival times and wave heights from multiple locations to

test if mega-thrust events have happened in apparently quiet regions, and assess the likely

consequences of these events reoccurring.

Reliance on modern instrumental records of earthquake events to determine seismic risk

severely biases hazard assessments, as the relevant temporal scales are hundreds or thousands

of years on a given fault zone. To improve risk estimates, it is imperative to draw from

historical records of damaging earthquakes, which reach beyond the fifty to seventy year

horizon provided by modern instrumental records. To this end, there has been substantial

effort invested in the quantification of the characteristics of pre-instrumental earthquakes and

tsunamis; see e.g. [4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 2, 18, 19, 20]. As noted in these

references, the historical and prehistorical data sources are sparse in details and laced with

high levels of uncertainty. To improve the usage of these imprecise data sources, we develop

a systematic framework that provides estimates in concert with associated uncertainties on

earthquake parameters. We then apply a Bayesian statistical inversion approach already

1
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leveraged in a variety of disciplines in the physical, social and engineering sciences, (see

[21, 22, 23] as well as [24, 25, 26, 27]), to reconstruct large seismic events from historical

accounts of the resulting tsunamis. Our focus here is on an initial case study concerning

the reconstruction of the 1852 Banda Arc earthquake and tsunami in Indonesia detailed in

the recently translated Wichmann catalog of earthquakes [2, 28] and from contemporary

newspaper accounts [29]. To formulate a Bayesian posterior distribution that estimates

various parameters of the 1852 seismic and tsunami event, we develop a ‘forward model’ that

associates seismic parameters specifying earthquake location and magnitude with shoreline

observations that include wave arrival times, maximal wave height at the shoreline, and

coastal inundation. The forward model utilizes the Geoclaw software package [30, 31, 32, 33]

to numerically integrate the shallow water equations for predicting the evolution of the

tsunami initiated by seafloor deformation due to the earthquake itself.

Chapter 2. Background

2.1 Bayesian Inference

Bayesian probability is a natural setting for this inference problem. Under the Bayesian,

or epistemic, interpretation of probability, we can model uncertainty regarding the location,

intensity, and geometry of the source earthquake as random variables. In contrast to a

frequentist interpretation of probability, these random variables need not represent a truly

random process; correspondingly we do not interpret subjective probabilities as the chance

of an event occurring, but as the credence of an event occurring.

The tools of Bayesian inference provide a robust framework for quantifying epistemic

uncertainty. Here we recite the standard definitions of measure-theoretic probability, as well

as Bayes’ Theorem for random variables. It is assumed that the reader has at least some

familiarity with these topics. While we follow the presentation in [22], the reader may see

[34] for an extended treatment of the topic.

2
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Given a set Ω, a σ-algebra F ⊆ 2Ω, and a countably-additive function µ on F , the triple

(Ω,F , µ) is called a measure space, the elements of F are called measurable sets, and µ is

called a measure. A standard example of a measure space is (Rn,M, µ), where µ is Lebesgue

measure andM are the Lebesgue-measurable sets in Rn. Within the context of probability

theory, it is usually sufficient to consider the smaller σ-algebra of Borel sets, denoted B(Rn).

A measure space with µ(Ω) = 1 is also called a probability space. The measure on a

probability space is called a probability measure, and is usually denoted with the letter P .

In a probability space, elements of F are called events, and the function P assigns to each

event E a value P (E) ∈ [0, 1], which is the probability of E occurring. When Ω is a countable

(possibly finite) set, the space is called a discrete probability space.

A function f : Ω1 → Ω2 between measure spaces (Ω1,F1, µ1) and (Ω2,F2, µ2) is called

measurable if the pre-image of every measurable subset of Ω2 is a measurable subset of Ω1.

A measurable function X : Ω → Rn from a probability space (Ω,F , P ) to (Rn,B(Rn), µ) is

called a random variable. A random variable with countable (perhaps finite) range is called a

discrete random variable. Otherwise, it is called a continuous random variable. A collection

X1, . . . , XN of random variables defined on the same probability space form the product, or

joint random variable X1 × · · · ×XN .

Random variables are the workhorses of probability theory. Each random variable induces

a probability measure µX on (Rn,B(Rn)):

µX(A) = P (X−1(A)), A ∈ B(Rn).

This probability measure is called the distribution of X. The distribution has a very rea-

sonable interpretation: µX(A) is the probability that X(ω) ∈ A. This information is also

contained within the cumulative distribution function (CDF) of X:

FX(x) = µX((−∞, x1]× · · · × (−∞, xn]), x = [x1, . . . , xn]T.

3
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FX(x) is the probability that X(ω) is entry-wise less-than or equal-to x. When the distribu-

tion of a random variable is absolutely continuous with respect to Lebesgue measure, there

exists a nonnegative function fX , called the probability density function (pdf) of X, such

that

µX(A) =

∫
A

fX(x)dx.

The pdf of X, when it exists, is extremely useful when working with random variables.

For continuous random variables X : Ω → Rn, we will abuse notation and write p(x)

to mean the evaluation of the probability density function (pdf) of X at x ∈ Rn (when it

exists). Given another continuous random variable Y : Ω → Rm, we will write p(x, y) to

mean the evaluation of the joint pdf of X and Y at (x, y) ∈ Rn × Rm. We will also write

p(x|y) to mean the evaluation of the conditional pdf for X|Y = y. We will write x1, x2, . . .

to indicate realizations of the random variable X.

For discrete random variables, the analog of the pdf is the probability mass function, or

pmf. The pmf pX of X gives the probability of single points in the range of X: pX(x) =

P (X(ω) = x). We will follow the abuse of notation above and use p to denote the pmf/joint

pmf/conditional pmf when context allows.

The heart of Bayesian inference is, of course, Bayes’ Theorem, which is simply a relation

between the conditional densities/mass functions p(x|y) and p(y|x):

p(x|y) =
p(y|x)p(x)

p(y)

(
=

p(y|x)p(x)∫
p(y|x)p(x)dx

)
,

where the integral is defined appropriately, i.e. it reduces to a summation in the discrete

case.

Bayes’ Theorem allows for the “inversion” of conditional probabilities. This is particularly

useful when X represents some unknown quantity of interest and Y represents data that is

generated in some known way, conditioned on a given value of X. In this context, Bayes’

Theorem updates the knowledge about X in light of known data Y = y. Here, p(x) is

4
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called (the density of) the prior distribution, as it represents the knowledge about X before

considering the data. The conditional density p(y|x) is called the likelihood, and represents

the known connection between the data Y and the unknown quantity X. Finally, p(x|y)

is called (the density of) the posterior distribution, which represents the knowledge about

X after incorporating the data. Said concisely: Bayesian inference is the computation (or

estimation) of posterior distributions given observations of the data, assumptions about the

likelihood, and any prior knowledge of the unknown variable X.

As an example, consider the age A and height H of a child. For children of a given age,

height can be said to follow some fixed distribution, say a normal distribution with age-

dependent mean µa and fixed variance σ2. Consider a child whose exact age is unknown, but

is known to be between 5 and 10 years old. This corresponds to a uniform prior distribution

for A on [5, 10]. Suppose the height of the child is measured to be h. The likelihood p(h|a)

representing the probability the child is a certain height h, given that they are a years old,

would then be:

p(h|a) =
1

σ
√

2π
exp

(
−(h− µa)2

2σ2

)
.

Noting that p(h) =
∫ 10

5
p(h|a)p(a)da is a normalizing constant, the posterior pdf is:

p(a|h) ∝ p(h|a)p(a) =
1

σ
√

2π
exp

(
−(h− µa)2

2σ2

)
· 1

5
.

If µa is linear in a, then the posterior distribution is also a normal distribution. (In particular,

if µa = ma+ b, then the posterior distribution has mean h−b
m

and variance σ2

m2 ). If µa is not

linear in a, then the posterior distribution may not belong to a known family of distributions,

but it may still be estimated by various methods, including the sampling techniques discussed

below.

5
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2.2 Sampling Methods

A number of issues appear when naively applying Bayes’ Theorem to more complicated

problems. If the unknown quantity X is high-dimensional (taking values in Rn), then the

normalizing constant in the denominator requires a high-dimensional integral that may be

impossible to compute exactly and effectively impossible to estimate numerically. Further-

more, the computation of expectations or higher-order moments of the posterior (something

of interest in many applications) will also require computing intractable high-dimensional

integrals. In short, although Bayes’ Theorem may specify the theoretical existence of the

posterior distribution, it may not be feasible to apply Bayes’ Theorem directly to obtain

useful and meaningful interpretations of the posterior itself.

Despite these challenges, suppose that it is possible to generate samples from the posterior

distribution. Given samples x1, x2, . . . , xN , the expectation E[X] of the posterior distribution

can be estimated as 1
N

∑
xi. Similarly, higher-order statistics ofX, and statistics of functions

of X, could be estimated using standard estimators from inferential statistics. With a

sufficiently large number of samples, desired information about X could be estimated to

high accuracy.

A robust family of sampling methods fall under the umbrella of Markov chain Monte

Carlo (MCMC) methods. These methods work by simulating a Markov chain which has the

desired sampling distribution, i.e. the posterior, as its stationary, or steady-state, distribu-

tion. Thus, a large number of samples from this Markov chain will adequately represent the

desired posterior distribution and its relevant statistics. We introduce here one such method,

the Metropolis-Hastings algorithm, originally developed by Nicholas Metropolis [35], and ex-

tended by W.K. Hastings [36].

A Markov chain is a sequence of random variables X1, X2, . . . satisfying the Markov

property :

P (Xn+1 ∈ A|Xn = xn, . . . , X1 = x1) = P (Xn+1 ∈ A|Xn = xn) ∀A ∈ B(Rn)

6
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In other words, the future states of the chain depend on the past states only though the

present state. This is often called being memoryless. A Markov chain where P (Xn+1 ∈

A|Xn = xn) = P (Xn ∈ A|Xn−1 = xn−1) for all n is called time-homogeneous : the transition

probabilities do not vary with the time index n.

It is well-known that time-homogeneous finite-state Markov chains have stationary dis-

tributions given by a particular eigenvector v of their transition matrix P : Pv = v. Iden-

tifying the stationary distribution of a continuous-state Markov chain is more challenging.

However, the derivation of the Metropolis-Hastings algorithm only requires a simplified con-

dition, called detailed balance. Although we omit the full derivation, the interested reader

may consult pp. 92-96 of [22].

The key is to consider the probability transition kernel for a continuous-state Markov

chain (the analogue of the transition matrix) to be of the form:

P (Xn+1 ∈ A|Xn = x) =

∫
A

K(x, y)dy + r(x)χA(x).

Here K(x, y) is the probability density of a transition from the state x to the state y, and

r(x) is the probability of remaining at the state x. The balance equation states that π(x) is

the probability density of the stationary distribution of the above Markov chain if:

∫
Rn

π(x)K(x, y)dy =

∫
Rn

π(y)K(y, x)dx.

The detailed balance equation, which clearly implies the above, is:

π(x)K(x, y) = π(y)K(y, x).

This can be read as saying: “the steady-state frequency of x, times the frequency of transitions

from x to y, is equal to the steady-state frequency of y, times the frequency of transitions

from y to x.”

7
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In order to construct a Markov chain with a specified stationary distribution, it is enough

to construct a probability transition kernel so that detailed balance is satisfied. As a matter

of fact, it is possible to modify a given Markov chain to have a desired stationary distribution.

Let π(x) be the desired stationary distribution pdf, and suppose q(x, y) is the density function

for a Markov probability transition kernel. If we can find a “correction function” α(x, y) such

that:

π(y)α(y, x)q(y, x) = π(x)α(x, y)q(x, y),

then detailed balance holds for the Markov chain with transition kernel:

P (Xn+1 ∈ A|Xn = x) =

∫
A

α(x, y)q(x, y)dy + (1− α(x, y))χA(x).

The Metropolis-Hastings correction function is to set:

α(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
.

In this context, q(x, y) is called the proposal kernel, and α(x, y) is called the Metropolis-

Hastings acceptance function. The algorithm is to use q to “propose” a new state in the chain,

and then to accept that new state with probability α, otherwise remaining at the state x.

If q(x, ·) is easy to sample from, then the only work is to evaluate the desired stationary

distribution pdf. The full algorithm is as follows:

Algorithm 1: Metropolis-Hastings
1 Initialize: x0

2 for i = 0, . . . do
3 Propose u ∼ q(xi, ·)
4 Set α = min

(
1, π(u)q(u,xi)

π(xi)q(xi,u)

)
5 Draw p ∼ U(0, 1)
6 if p < α then
7 Set xi+1 = u
8 else
9 Set xi+1 = xi

8
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To draw from the posterior distribution of Bayes’ Theorem, one only needs to be able to

evaluate the un-normalized density p(y|x)p(x), since the unknown normalization constant

cancels out in the definition of α.

While the Metropolis-Hastings algorithm will function with many proposal kernels, a

good choice of proposal kernel can significantly speed up convergence. A common choice is

the random walk proposal kernel, which is a multivariate Gaussian centered at the current

state xi, with a fixed covariance matrix.

The Metropolis-Hastings algorithm is not, strictly-speaking, parallelizable. However,

multiple chains can be simulated simultaneously, drawing samples at a faster rate. This,

however, does not necessarily speed up the convergence to the stationary distribution, as

the Markov chains may not be initialized within the “bulk” of the distribution. The period

of time before the Markov chain begins to display convergence is called burn-in. There is,

however, a trick to boot-strapping multiple chains to speed up burn-in. Periodically, the

chains can be paused and re-initialized by resampling from the current states of all chains,

proportional to the value of the sampling distribution pdf at each state [23]. This means that

chains in poorly-performing regions of the parameter space can be “jumped” to regions that

are more important in the stationary distribution. Initializing multiple chains in different

parts of the parameter space can accelerate burn-in, and therefore convergence.

2.3 Inverse Problems

Inverse problems are ubiquitous in mathematics, pure and applied. As the name says, an

inverse problem is the inverse of a direct problem. For example, solving a polynomial equation

is the inverse of the direct problem of evaluating a polynomial function. Inverse problems

are often more challenging than the corresponding direct problem.

An important kind of inverse problem arises when the direct problem is physical in na-

ture. Often, the direct problem is given as an initial/boundary value problem for a partial

differential equation. For example, solving the heat equation is the direct problem for mod-

9
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eling the flow of thermal energy (or, more broadly, a diffusive phenomenon). Given an initial

condition and boundary data, a solution to the heat equation specifies the temperature at

future times. The inverse problem for the heat equation IBVP is: given some future tem-

perature state, determine the initial temperature state. This is a very challenging problem,

as the very nature of the heat equation means that information about the initial condition

is lost as time moves forward.

Statistical methods for inverse problems treat the unknown parameters/initial condition

as a random variable. Bayesian statistical methods for inverse problems attempt to compute

a posterior distribution for the parameters/initial condition. These methods often require the

ability to solve the direct, or forward problem for a variety of parameters/initial conditions.

This means they often rely on robust numerical methods for PDEs. In essence, the statistical

method computes a sequence of solutions to the forward problem that, in a probabilistic

sense, converge to the parameter values that likely produced the observed data. However,

since the direct problem is “merely” a model for the real-world data-generating process, care

must be taken to insure that the forward model is robust. When implemented properly,

the Bayesian approach is a powerful way to provide a solution to an inverse problem that

captures the relevant uncertainties.

Chapter 3. Overview of Method

There are three key components to our method, as a Bayesian inverse approach:

• The likelihood

• The forward model

• The prior distribution

The likelihood is an interpretation of the anecdotal accounts (such as those found in

the Wichmann catalog) as a family of probability distributions. We source three kinds of

10
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observations from the accounts: on-shore arrival time of the tsunami wave, maximal on-

shore wave height, and coastal inundation distance. Each recorded observation is cast as

a probability distribution, and those distributions together form the likelihood function.

Chapter 4 is focused on the likelihood.

The forward model is the map from source earthquake parameters (location, size, geom-

etry) to observations. The forward model includes the formation of the tsunami from the

source earthquake (via seafloor deformation) and the propagation of the tsunami waves to

the observation locations. This is accomplished by using the GeoClaw software package.

GeoClaw both computes the seafloor deformation and simulates the tsunami via a finite-

volume solver for the shallow water equations [33]. Chapter 5 contains our discussion of the

forward model.

The prior distribution encodes knowledge about earthquakes in general, as well as infor-

mation about the subduction zone in question. There are physical constraints on earthquake

location, size, and geometry, and these are all enforced via the prior distribution. Here we

also define our approach to parameterizing the space of possible earthquakes, giving atten-

tion to reducing the dimensionality of the parameter space while maintaining a physically-

reasonable representation. We make special use of the USGS Slab2 3D model of the Banda

Arc subduction zone [37]. Chapter 6 discusses the prior and parameterization in detail.

Having specified the Bayesian inverse problem, we use random walk Metropolis-Hastings

to sample from the posterior distribution. Given that each sample requires a computationally-

expensive call to the forward model, we make use of multiple Markov chains combined us-

ing periodic resampling. All of this is implemented in Python as a package that we call

tsunamibayes. An overview of the software implementation is provided in chapter 7.

Throughout the text, we hold close to the 1852 Banda Arc case study. While we anticipate

that a number of alterations will be made as we study other events, the 1852 Banda Arc event

has been our focus, and is useful for illustration purposes. Chapter 8 contains a summary of

our results when applying our method to the 1852 Banda Arc event.

11



www.manaraa.com

Chapter 4. Construction of the Likelihood

4.1 Overview of historical account and potential observations

Observations are selected from the historical accounts in the Wichmann catalog [38, 28]

based on two key criteria. First, the account has to provide an identifiable location (latitude-

longitude) that can be incorporated into the modeling. In other words, the details provided

in the historical account must be sufficiently accurate to yield a precise location via modern-

day maps and information. Second, the account has to be sufficiently detailed that some level

of confidence can be placed on the observable in question. Note that drawing from a catalog

of this kind introduces unavoidable ambiguities that do not apply to modern instrumental

data. For example, we specify the wave height based on passages of the form “[t]he water

rose to the roofs of the storehouses and homes,” as described in more detail below.

Thirteen different observations for the 1852 Banda Arc tsunami meet these criteria spread

across nine locations, which are shown in Figure 4.1. These include three types of observa-

tions:

(i) Arrival time. The arrival of the first significant wave after the shaking stopped. We

assume that the arrival time refers to the first wave, not the maximal one.

(ii) Maximum wave height. This is the most frequent observable, and is identified at every

location.

(iii) Inundation length. This refers to the distance inland that the wave traveled onshore,

and is actually interpreted for our purposes as a deterministic function of the wave

height. This essentially places a double amount of weight on those locations that have

observations of both wave height and inundation.

Based on the text of each account, a probability distribution is developed describing the

probability that each observation took a given value. These distributions, which are assumed

12
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Figure 4.1: The nine observation locations from the Wichmann catalog for the 1852 Banda
Arc earthquake and tsunami.

to be independent, are shown in 4.2. Rather than explain the reasoning behind all thirteen

of these likelihood distributions for each of the nine locations, we only provide a detailed

discussion of the likelihood for a single location: Banda Neira.

4.2 Banda Neira: a sample likelihood distribution

From page 242 in the Wichmann catalog: “Barely had the ground been calm for a quarter

of an hour when the flood wave crashed in...The water rose to the roofs of the storehouses

and homes...[the wave] reached the base of the hill on which Fort Belgica is built on Banda

Neira”. Ideally we would expect the wave height observation to be near the boat dock on

Banda Neira which is just east of Fort Nassau. For the available bathymetry data we seek

13
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a location near shore that will maintain a sizable wave for a reasonably initiated tsunami.

With this in mind, we select −4.524◦ latitude and 129.8965◦ longitude.

Using 15 minutes as the anticipated arrival time of the wave at Banda Neira is too

simplistic for these circumstances. In particular it is noted in other locations that the

shaking lasted for at least 5 minutes, but the modified Okada model used in Geoclaw here

assumes an instantaneous rupture. Hence we build into the likelihood, a skew toward longer

times with a mean of 15 minutes. This is done with a skew-normal distribution with a mean

of 15 minutes, standard deviation of 5 minutes, and skew parameter 2.

Assuming a standard construction for the time period for the homes (and storehouses)

we can assume the water rose at least 4 meters above standard flood levels as most buildings

of the time were built on stilts and had steep vaulted roofs. Based on the regular storm

activity in the region we can expect that with high tide, and normal season storm surge, the

standard flood level is also approximately 2 meters in this region. This leads us to select a

normally distributed likelihood for wave height with a mean of 6.5m and standard deviation

of 1.5m, allowing for reasonable likelihood for wave heights in the range from 3m to 9m.

To quantify the wave reaching the base of the hill, we measured the distance from 20

randomly selected points along the beach to the edge of said hill in ARCGIS. The mean of

these measurements was 185 meters, with a standard deviation of roughly 65 meters. Thus

we choose a normal distribution with those parameters.

4.3 Overview of all likelihoods

The likelihood distributions for the other 8 locations are constructed in a very similar man-

ner to that described above for Banda Neira. The total likelihood of a given event is then

computed as the product of these individual observational likelihoods (we rely heavily on

the assumption that each observable is independent of the others). The assumption of inde-

pendence of the different observations is certainly questionable, but there is also no reason

to suppose that a more complicated construction of the total likelihood is preferable, i.e. we

14
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have chosen to take the most simplified approach without making additional unjustifiable

assumptions about the structure of the likelihood.
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Figure 4.2: 1852 Banda Arc tsunami likelihood densities for the 13 observations at 9 loca-
tions. Each likelihood density represents an interpretation of the Wichmann catalog descrip-
tion

Chapter 5. Forward Model

To solve the inverse problem of inferring earthquake parameters from tsunami observations,

the forward problem (computing tsunami observations from earthquake parameters) must

first be specified. A tsunami is produced when an earthquake causes a sudden and significant

deformation in the shape of the seafloor. The seafloor deformation produces a displacement

of water, which propagates as a long wavelength tsunami wave. Because of this it is necessary
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to model both the seafloor displacement from the earthquake, and the resultant propagation

of the tsunami wave in the open ocean and eventual run up on the shoreline. Since our

observations include the arrival time of the tsunami relative to the seismic waves of the

earthquake (physically observed shaking), we will need to model the tsunami dynamically.

The software package GeoClaw [30, 31, 32, 33], which is part of ClawPack (see http:

//clawpack.org), provides a suite of tools that cover each of these modelling problems.

To compute seafloor deformation, GeoClaw uses a Green’s function solution to a particu-

lar elastics problem that looks for surface deformation in a half-space for an instantaneous

rectangular disturbance [39, 40]. This widely accepted model for surface displacement of

a specified earthquake is known as the Okada model. To compute the tsunami propaga-

tion, GeoClaw uses an adaptive mesh-refinement finite-volume solver for the shallow water

equations. Here we provide a brief overview of both components of this forward model.

5.1 The Okada model for seafloor deformation

The Okada model computes seafloor deformation as an idealized elastic dislocation problem.

The model assumes that the Earth is made of a homogeneous isotropic elastic material, with

infinite extent and a flat surface (hence the half-space problem) [39]. For rupture zones which

are small (relative to the radius of the earth) these assumptions are quite reasonable, and

the Okada model has been shown to be a very useful approximation for seafloor deformation

in the context of tsunami modeling.

Elastic mechanics is concerned with determining displacement fields for elastic solids.

A displacement field is a vector-valued function u(x, y, z) specifying how the solid has de-

formed relative to some reference configuration. Linear elasticity theory for static problems

in isotropic media is centered on the Navier-Cauchy equilibrium equation:

(λ+ µ)∇(∇ · u) + µ∇2u + F = 0. (5.1)
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Here F is the total body force per unit volume. λ and µ are constants referred to as Lamé’s

coefficients. In geodynamics, we often take λ = µ, which is a valid assumption for the Earth’s

crust [41]. µ is also known as the shear modulus.

The Okada model computes the displacement field at the surface z = 0 produced by a

discontinuous displacement on a rectangular patch within the elastic material. The equations

of the Okada model are closed-form expressions for a Green’s function solution integrated

over the rectangular source [39]. The model requires nine independent parameters, which

describe the location, size, and orientation of the rectangle, as well as the direction and size

of the displacement. Expressed in geographic coordinates, these parameters are:

• latitude and longitude of the rectangle center

• depth of the rectangle center

• length and width of the rectangle

• strike, the angle the top edge of the rectangle makes with due north

• dip, the angle the rectangle makes with the free surface

• slip, the amount of displacement (parallel to the rectangular surface)

• rake, the angle of the slip direction, relative to the strike direction

See Figure 5.1 for a diagram of the Okada parameters.

The computed deformation of the flat seafloor is added to the actual bathymetry to

produce the post-earthquake bathymetry. This deformed seafloor is used to produce the

initial condition for the GeoClaw finite volume solution to the shallow water equations.

In cases where the earthquake cannot be reasonably modeled as a single rectangular

source, multiple rectangular patches can be used, and the resulting deformation summed.

This is the case in the 1852 Banda Sea earthquake, as the curved arc of the subduction zone

rules out a single rectangular source. In the following chapter, we discuss our approach for

generating rectangular patches for earthquakes on the Banda Arc.
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Figure 5.1: Okada model for a rectangular source. Figure from [42].

5.2 Forward propagation of the tsunami through Geoclaw

The propagation of the tsunami wave is computed via the nonlinear shallow water equations

supplemented with the appropriate initial and boundary conditions dictated by the speci-

fied Okada parameters and bathymetry of the region. We simulate the tsunami generated

by each Monte Carlo sample using the Geoclaw software package, [30, 31, 32, 33] which

employs an adaptively-generated mesh for a finite volume based scheme. For bathymetry

(sea-floor topography) we use the 1-arcminute etopo datasets available from the open access

NOAA database1 referred to hereafter as NOAA bathymetry, and for the coastline near each

observational point we utilize higher resolution Digital Elevation Models (DEM) from the

Consortiom for Spatial Information (CGIAR-CSI) 2 referred to below as DEM coastlines.

These higher resolution topographical files yield a 3-arcsecond resolution on land, but give

no additional information on the sub-surface bathymetry. The extent of each of these files

is provided in Table 5.1.

In addition to these DEM coastline datasets and the NOAA bathymetry, we also took

advantage of detailed sounding maps available at http://inarisk.bnpb.go.id. To convert

this data into digitally accessible information, contours were taken from images exported from

the website and then traced and interpolated in ArcGIS to produce approximate depths in
1https://www.ngdc.noaa.gov/mgg/global/global.html
2http://srtm.csi.cgiar.org/srtmdata/
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Observation location latitude extent longitude extent
Banda Neira & Pulau Ai [−4.6,−4.467] [129.6, 129.983]

Ambon, Saparua, Haruku, & Nusa Laut [−3.881,−3.411] [127.844, 128.909]
Pulau Buru [−3.381,−3.271] [127.041, 127.213]
Amahai [−3.414,−3.269] [128.866, 128.999]

Table 5.1. Specification of the extent of the DEM coastline files used near each of the historically observed
accounts.

the same regions as specified in Table 5.1. For example, the bathymetric readings based on

this data are shown in Figure 5.2 for the bay of Amahai. The upper left panel in Figure 5.2

depicts the bathymetry data that is gleaned from http://inarisk.bnpb.go.id and digitized

by interpolating across contours of constant depth in ArcGIS. The upper right panel of Figure

5.2 depicts the bathymetry/topography from the NOAA bathymetry dataset. Using the built

in interpolative methods in Geoclaw’s topotools package (topotools.interp_unstructured

with the cubic interpolant, and a proximity radius of 1000), we interpolate the coastline and

coarse bathymetry from the NOAA dataset to match the bathymetric contours from the

upper right panel to produce the lower left panel. This lower left panel does not accurately

capture any of the topographical features of the coastline and suffers significantly from

interpolant error onshore as there are no bathymetric readings there. The actual shoreline

and onshore topography is then overlaid from the DEM coastlines on top of the bottom left

panel of Figure 5.2 to create the final product which is seen in the bottom right panel of

the same Figure. This retains the improved bathymetric contours, and yields an accurate

coastline and near-shore topographical profile.

This same process is repeated for Palau Buru, and the coastline near the islands of

Ambon, Saparua, Haruku, and Nasu Luat. The resultant final bathymetric files are not

shown here, but similar results hold. Finally, all of these high resolution bathymetric files

are used by Geoclaw when the wave approaches these locations onshore.

For the region near Banda Neira and Palau Ai, the bathymetric data was still quite rough,

particularly for the narrow channels between Banda Neira, Banda Api, and Lonthor. We

obtained a set of soundings for this region from local government officials. Using the same
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Figure 5.2: Combining all of the bathymetric and topographical sources into a single file
for the bay near Amahai. The upper left figure demonstrates the bathymetry drawn from
the level curves exported from http://inarisk.bnpb.go.id. The upper right figure shows
the level of resolution for the NOAA bathymetry data. The lower left figure shows the
interpolation of these two data sets (omitting the interior of the coast, i.e. all grid points
from the NOAA bathymetry that are not below sea level, or border a grid below sea level).
The lower right figure is the final product, combining the improved bathymetric data with
the DEM coastline dataset.
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approach as described above for the bay of Amahai, these discrete soundings are interpolated

for the entire region surrounding the Banda islands (except that a linear interpolant is used

instead of cubic due to the sparsity of the measurements) and overlayed with the DEM

coastlines. The resultant bathymetry files for Palau Ai and the Banda islands are significantly

improved and are critical for the inference as discussed below.

For the forward simulations of the tsunami wave, we employ an adjoint-based adaptive

mesh strategy [43]. This entails solving a linearized adjoint equation backward in time with

sources centered at each gauge location The solution of the adjoint equation produces waves

that propagate backward in time from the desired observation locations to indicate what

part of the forward wave will eventually influence the tsunami at those locations (see [43] for

details). To initialize the adjoint solver, we place a smoothed Gaussian perturbation h(x, y)

to the wave height at each gauge location given by:

h(x, y) =
∑
k

exp(−r2
k/150), (5.2)

where rk is the distance from the point (x, y) to the gauge location (xk, yk). The solution of

the linearized adjoint problem guides the choice of refinement regions of the fully nonlinear

forward model, indicating where the wave that will reach the observed locations will be at

specific times. The benefit of using this approach as noted in [43] is that only those parts

of the wave that will reach the desired locations are refined, i.e. the mesh refinement is

restricted to those parts of the domain (in both space and time) that will most influence the

final wave at the desired location. In addition, for the application at hand, we only need to

run the backward adjoint solver once, and then the generated output can be used for every

sample so long as the gauge locations are not changed. This saves a substantial amount of

computational cost, allowing us to use a much finer mesh near the observational locations

than a standard adaptive mesh would have allowed.

We use an adaptive mesh with 6 levels, starting with 6 arcminute resolution in the open

water with no motion, and then going through 2×, 2×, 2×, 3×, and 5× grid refinements
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Observation location latitude extent longitude extent
Banda Neira [−4.576,−4.49] [129.86, 129.95]
Pulau Ai [−4.525,−4.515] [129.76, 129.785]
Ambon [−3.8,−3.66] [127.98, 18.2]
Hulaliu [−3.515,−3.478] [128.53, 128.577

Pulau Buru [−3.39,−3.27] [127.05, 127.28]
Saparua (near port) [−3.592,−3.572] [128.65, 128.7]
Saparua (main bay) [−3.626,−3.592] [128.66, 128.717]

Nusa Laut [−3.653,−3.644] [128.804, 128.82]
Amahai [−3.352,−3.328] [128.9, 128.927]

channel between Haruku & Saparua [−3.54,−3.515] [128.53, 128.563]
channel between Haruku & Saparua [−3.594,−3.54] [128.552, 128.6]

Table 5.2. Specification of the statically refined regions labeled according to the historically observed data.
To maintain computational tractability, some choices were necessarily made regarding which regions in the
computational domain were needed at the highest mesh refinement level. For instance, the narrow channel
between the islands of Haruku and Palau Saparua is captured via two distinct refined grids to avoid having

to much spatial refinement unnecessarily placed over land.

to those regions where the adjoint indicates the wave will be, resulting in the finest grid of 3

arcseconds which matches the fine resolution of the DEM coastline files. This means that the

mesh levels are given by 6 arcminute, 3 arcminute, 1.5 arcminute, 45 arcsecond, 15 arcsecond,

and 3 arcsecond resolution respectively. In addition to this dynamic adaptation of the mesh,

we statically fix regions near each gauge at the highest mesh resolution (3 arcseconds) for

the entirety of the simulation, thus accurately capturing the wave characteristics near the

observed locations. These regions are explicitly specified in Table 5.2. Implementation of

such a highly refined grid for the region in question required some minor modification of the

default list lengths in the fortran code as described in the code repository. The backward

adjoint solver is run on a 15 arcsecond grid and the output files are saved every 5 minutes to

ensure adequate spatial and temporal resolution for the dynamic grid refinement. Geoclaw

interpolates these output files temporally to determine the wave location throughout the

entire simulation.

All other settings in Geoclaw are set to their default values. An adaptive time step is

adjusted according to the Courant-Friedrichs-Lewy (CFL) condition with a desired CFL of

0.75. The spatial discretization in Geoclaw is a second order scheme with the MC limiter
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[44] employed to avoid the development of un-physical shocks. All simulations are run for

a physical time window of 1.5 hours to ensure that the wave has reached all of the relevant

locations (for this event the longest historically recorded time between the earthquake and

the arrival of the wave was approximately 40-45 minutes as shown in Figure 4.2). Each

simulation of Geoclaw generates wave heights and arrival times at the locations shown in

Figure 4.1.

Chapter 6. Parameters and Priors

6.1 Parameter Selection

To make efficient use of Bayesian methods, it is necessary to consider the dimensionality

of the parameter space. As the number of parameters to be estimated increases, so does

the difficulty of the sampling problem. This ‘curse of dimensionality’ appears in this setting

because Bayesian inference boils down to the computation of high dimensional integrals. It

is known that random walk MCMC methods converge arbitrarily slowly as the dimension of

the parameter space increases [45].

A zeroth order approach is to consider the 9-dimensional parameter space for the Okada

model. However, as discussed in the previous chapter, it is unreasonable to model the source

earthquake as a single rectangular rupture. Naively, an N -subfault rupture zone would

require a 9N -dimensional parameter space, which produces an intractable sampling problem

for any useful value of N (for even the simplest fault around the Banda Arc, we would expect

N ≥ 3).

To reduce the dimensionality of the parameter space, we make a distinction between

the (forward) model parameters and the sample parameters. The model parameters are the

direct inputs to the forward model: in this case, the 9N Okada parameters for an N -subfault

rupture. The sample parameters are some sufficient lower-dimensional set, from which the

model parameters can be computed. The sample parameters define the MCMC search space.
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For reducing the number of sample parameters, a good starting point is to consider model

parameters that may be assumed to take constant values. Among the nine Okada parameters,

the rake angle can be reasonably fixed to 90◦. This corresponds to pure thrust motion, which

acts perpendicular to the strike of the fault. While strike-slip motion is certainly present in

real megathrust earthquakes, thrust motion is the primary driver of seafloor deformation,

and thus tsunami formation. Within the Okada model, rake angles other than θ = 90◦ are

roughly equivalent to a reduction in slip by a factor of sin(θ). It is therefore difficult to infer

both the rake angle and the slip distance.

Another avenue is to seek model parameters that can be determined from other model

parameters in the context of prior information. In the case of the 1852 Banda Arc Earth-

quake, a detailed model of the subduction zone geometry is available from the USGS Slab2

dataset [37]. The Slab2 data for the Banda Arc is depicted in Figure 6.1. Depth, dip angle,

and strike angle can be determined from latitude and longitude.

We are left with five of the Okada parameters: latitude, longitude, length, width, and

slip. These could be chosen as the sample parameter space. However, a problem arises in

choosing the triple of (length, width, slip) as sample parameters, due to their relationship

with earthquake magnitude. The scalar seismic moment M0 of an earthquake of length L,

width W , and average slip S is defined as

M0 = µLWS (6.1)

where µ is the shear modulus of the rock, with dimensions of force per unit area. The scalar

seismic moment was introduced by H. Kanamori in his definition of moment magnitude Mw

[46]. Moment magnitude is an improvement over the classical Richter magnitude scale, and

is now the standard magnitude scale used by the U.S. Geological Survey [47]. Moment

magnitude is defined as

Mw =
2

3
(log10M0 − 9.05). (6.2)
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Figure 6.1: Slab2 depth, depth uncertainty, strike angle, and dip angle maps for the Banda
Arc subduction interface.
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It is observed that the empirical frequency of earthquakes of a given magnitude follows an

exponential distribution [48]. In order to ensure that magnitude follows an exponential prior,

we remove slip from the sample parameters and replace it with moment magnitude. Given

values of magnitude, length, and width, slip can be back-calculated via Equations 6.1 and

6.2.

Equations 6.1 and 6.2 also highlight a challenge when using a random walk proposal

kernel with these parameters. Since magnitude grows with the logarithm of length and

width, any fixed choice of variance for length and width in the Gaussian proposal kernel

will be inappropriate for all but a limited range of magnitudes. Therefore, we introduce

magnitude-normalized substitutes for length and width as sample parameters. Using the

Wells-Coppersmith dataset [49] (augmented with additional collected data), we computed

linear least squares fits for logL and logW against magnitude. These fits are displayed in

Figure 6.2. Our magnitude-normalized substitutes are ∆ logL and ∆ logW , the “residuals”

compared to the linear best fit. In other words: given values for Mw, ∆ logL, and ∆ logW ,

length and width are computed as:

logL = aMw + b+ ∆ logL

logW = cMw + d+ ∆ logW

where a, b, c, d are the coefficients of the linear best fits.

To the five sample parameters (latitude, longitude, magnitude, ∆ logL, ∆ logW ), we

add a sixth parameter: depth offset. The Slab2 data includes estimates of uncertainty in the

subduction interface depth (see Figure 6.1). Depth offset accounts for this uncertainty by

allowing for earthquakes that are situated somewhat deeper or shallower than is specified in

the Slab2 depth map.
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Figure 6.2: Wells-Coppersmith data and linear best fits for logL and logW against Mw.

6.2 Computing Subfault Model Parameters

As discussed before, it is necessary to model the earthquake as a collection of rectangular

subfaults that conform to the subduction interface geometry. Here we describe our approach

for “decompressing” the six sample parameters into the Okada parameters for N rectangular

subfaults.

The basic approach is to “break” a single rectangular rupture zone into an m× n grid of

identical subrectangles, which are then placed to conform to the interface geometry. Each

of these subrectangles has length L/m and width W/n, where L and W are the length and

width of the full rupture zone.

To fit this grid to the fault, it is easiest to use odd values form and n. By experimentation,

we determined to use m = 11 and n = 3 for the 1852 Banda Arc Earthquake. We place

a single point at the latitude and longitude of the centroid of the full rupture zone. Using

the Slab2 map of strike angle, we move in opposite directions, staying parallel to strike.

Every L/m kilometers, we place another point. This continues until m points are placed.

For each point, we then move in opposite directions, perpendicular to the strike angle,

placing points every W/n kilometers, until all mn points have been placed. These points
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are the latitude/longitude coordinates for the centers of the subrectangles. This procedure

is displayed in Figure 6.3.
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Figure 6.3: Placing subrectangles contoured to interface geometry. First, a point is placed at
the center of the rupture zone. Points are then placed forwards and backwards following the
strike angle (essentially following level curves of depth). Additional points are placed up-dip
and down-dip. Using Slab2 depth, dip, and strike data, Okada parameters for rectangles
centered at each point are computed.

Having specified the latitude, longtitude, length, and width for each subrectangle, the

remaining Okada parameters are determined as follows. Each subrectangle is given the same

slip value as determined by Equations 6.1 and 6.2. The strike and dip angles are determined

by the Slab2 strike and dip maps. The depth is determined by the Slab2 depth map, plus

the value of the depth offset sample parameter. As discussed above, all subrectangles are

assigned a rake angle of 90◦.
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6.3 Prior Distributions

Selection of appropriate prior distributions is a key step in good Bayesian inference. An over-

specified prior can overwhelm the data, and an under-specified prior may allow for parameter

values that are non-physical. Here we discuss our choice of prior distributions for latitude,

longitude, magnitude, ∆ logL, ∆ logW , and depth offset for the 1852 Banda Arc event.

Prior constraints on earthquake latitude and longitude are derived from the subduction

interface geometry. Large earthquakes can only be supported in a certain range of depth:

too deep, and the crust is too plastic to store the strain energy of a large earthquake [50], too

shallow, and the rupture interface would extend above the surface. We take the approach

that, a priori, depth is the primary constraint on earthquake location. Since the Slab2

dataset gives a depth map for the entire Banda Arc, any probability distribution on depth

produces an implied distribution on latitude and longitude. Based on the augmented Wells-

Coppersmith dataset, we chose a truncated normal distribution for depth. This distribution

is supported on [2.5, 50] kilometers, with a mean of 30km and a standard deviation of 5km.

Evalutating the pdf of this distribution at each latitude/longtitude coordinate, via the Slab2

depth map, gives a non-negative continuous function. Although this function does not

integrate to unity, the normalizing constant cancels out in the evaluation of the Metropolis-

Hastings acceptance parameter α. The unnormalized logpdf of the latitude/longitude prior

is displayed in Figure 6.4.

As discussed above, earthquake magnitude is observed to approximately follow an expo-

nential distribution. It is known that the exponential scaling cannot continue indefinitely

in the large magnitude regime, and a number of approaches have been used to address this

(see [48]). We take a simple approach of right-truncating the exponential distribution at

magnitude 9.5. A consensus estimate for the parameter of the exponential distribution is

λ = .5 [48].

Since ∆ logL and ∆ logW are magnitude-normalized length and width, defined as resid-

uals against a linear best-fit, we chose Gaussian prior distributions with mean zero. The
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Figure 6.4: Unnormalized logpdf of the latitude/longitude prior distribution

standard deviations for these distributions are determined from the sample variances for the

residuals in the augmented Wells-Coppersmith dataset against the linear fit. These values

are σ∆ logL = 0.188 and σ∆ logW = 0.172.

The prior for depth offset was chosen based on the Slab2 depth uncertainty data. The av-

erage reported uncertainty is roughly 5km, so a mean-zero normal distribution with standard

deviation 5 was selected.
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Table 6.1. Prior distributions for the 1852 Banda Arc earthquake

Parameter name(s) Kind Distribution Parameters

Latitude & longitude pre-image of truncated normal via
depth

• µ = 30km
• σ = 5km
• (a, b) = (2.5km,50km)

Magnitude truncated exponential • λ = .5
• (a, b) = (6.5,9.5)

∆ logL normal • µ = 0
• σ = .188

∆ logW normal • µ = 0
• σ = .172

depth offset normal • µ = 0
• σ = 5km

Chapter 7. Software Implementation

A key product of our research is the development of a Python package which implements

our method. Called tsunamibayes, this package is designed to be modular and flexible.

Since each hypothetical scenario may have a unique interpretation as a Bayesian inference

problem (different parameters/priors, modified/generalized forward model, additional types

of observations), the core code of the module does not assume particular features, but rather

provides a suite of tools that can be recombined or modified to suit the needs of the user.

The central part of the module is a collection of base classes that implement an abstract

interface between the general components of a Metropolis-Hastings sampler. These classes

are summarized in Table 7.1. Each base class contains several unimplemented methods that

are called within the core Metropolis-Hastings loop. These methods are intended to be

implemented in scenario-specific inherited classes. For example, the class BaseScenario has

an unimplemented method BaseScenario.propose(). Although to this point we have only

used a random walk proposal kernel, tsunamibayes does not assume that random walk will

always be used, and thus leaves the proposal kernel to be defined by the user.
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The modularity of the software is on display when defining the choice of sample param-

eters and specifying the relationship to the forward model parameters. BaseScenario acts

as a “central processing unit”, and allows the user to easily swap in alternative parameteriza-

tions of the sample space while using the same forward model parameters. This is important

when considering scenarios other than the 1852 Banda Arc event, which have different prior

constraints on earthquake parameters and thus may need to search over different sample

parameter spaces.

The package is open-source, available on GitHub: https://github.com/jpw37/tsunamibayes.

Table 7.1. tsunamibayes abstract base classes

Class BaseScenario BaseForwardModel BasePrior BaseFault

Description Implements
Metropolis-
Hastings, file I/O

Computes forward
model and evaluates
likelihood

Evaluates prior dis-
tribution

Manages geographic
data for fault zones,
computes Okada
parameters

Core methods • sample():
Metropolis-
Hastings algo-
rithm

• propose()*: Pro-
posal kernel

• proposal_
logpdf()*: log-
pdf of proposal
kernel

• map_to_model_
params()*: Map
from sample pa-
rameters to for-
ward model pa-
rameters

• run()*: Compute
forward model
for given model
parameters

• llh()*: Evaluate
log-likelihood for
given forward
model output

• logpdf()*: Eval-
uates prior logpdf

• rvs()*: Random
sample from prior
(optional)

• subfault_
split(): Com-
pute split into
subfaults con-
forming to fault
geometry

• depth_map()*:
Depth of fault
interface at given
lat/lon coordi-
nates

• strike_map()*:
Strike angle of
fault interface

• dip_map()*: Dip
angle of fault
interface

*methods to be defined in inherited classes
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Chapter 8. Results

8.1 Summary

Our analysis of the 1852 Banda Arc Earthquake was conducted over a period of four months,

from April to July 2020. Using the compute resources available through BYU’s Office of

Research Computing, we ran fourteen (14) parallel chains. These chains were initialized at

locations around the Banda Arc, and then run for a burn-in period of 6000 samples. After

the burn-in, the chains were resampled from the last states. The chains were run until each

produced 12000 samples, for a total of 168000. At 6000 samples, the chains were again

re-initialized with a resampling step.

From prior analysis, we anticipated that the posterior mass would be concentrated in a re-

gion near 4.5◦S, 131.5◦E. This was indeed the case. However, a separate mode of the posterior

was located during burn-in, in a wider region to the south around 5.5◦S, 131.5◦E. However,

the posterior pdf values for samples in this other region were on the order of 100 times lower

in comparison to samples in the northern region. Interestingly, chains in the south would not

cross into the north, and vice-versa. We discovered that this was due to major differences in

rupture zone geometries: northern samples tended to be longer and narrower for their given

magnitude, while chains in the south tended to be wider and shorter. This means that while

the two groups of chains appeared superficially close in latitude/longitude/magnitude, they

were actually in well-separated regions of the full parameter space. After resampling at the

end of burn-in, all fourteen chains were located in the north.

Figures 8.1 and 8.2 summarize the posterior distribution. We see some stark differences

compared to the prior distributions. The posterior is notably concentrated in the small region

near 4.5◦S, 131.5◦E, which is situated in a shallow part of the subduction interface. Also

notable is the marginal posterior for magnitude: despite a prior that heavily preferred lower

magnitudes, the posterior is still concentrated around earthquakes of magnitude 8.8. More

subtle inference is seen in magnitude-normalized length and width. The posterior favors
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rupture zones that are relatively narrow. This can be explained as a wave-height/arrival-

time tradeoff. In order for an earthquake to produce the observed wave heights in Banda

Neira, for instance, it needs to be quite a large event. However, larger earthquakes, all else

being equal, have rupture zones that are closer to Banda Neira, thus reducing the arrival

time of the wave. Therefore, a large but narrower rupture zone captures the balance in

wave-height/arrival-time.
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Figure 8.1: Sample epicenters from the posterior compared with the prior in lati-
tude/longitude. The posterior is concentrated in a small region in the northeast.

Given that the posterior is 6-dimensional, it can be difficult to visualize. Figure 8.3

displays the approximate conditional expectation for magnitude, depth offset, ∆ logL, and

∆ logW , conditioned on latitude and longitude. Several trends are apparent. The farther

outside the arc, the higher the expected magnitude. This is not surprising, as higher magni-

tudes would be required to produce large enough waves at that distance. Furthermore, the

farther outside the arc, the greater the value of depth offset. This appears to counteract the

shallowing of the fault interface towards the outside of the arc, ultimately producing earth-

quakes at constant depth among accepted samples. The closer the center of the rupture is

to the coast of Seram, the shorter the rupture. This is likely due to the rupture extending
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underneath Seram Island, which leads to a smaller tsunami (as only some of the rupture

occurs beneath the ocean). Thus, a shorter rupture zone increases the slip (and thus wave

height), counteracting the influence of Seram Island.
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Figure 8.2: Magnitude, depth offset, ∆ logL, and ∆ logW posterior histograms, compared
to the associated prior distribution densities (plotted in green).
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Figure 8.3: Posterior conditional expectation of magnitude, depth offset, ∆ logL, and
∆ logW conditioned on latitude/longitude.

8.2 Mixing and Convergence

It is important to give attention to the quality of the mixing of the Markov chains, as

well as to quantify, as much as possible, the degree to which the chains have converged

to the true posterior. There are a number of approaches to analyze this. For mixing,

autocorrelation analysis of time-series data is a useful measure. A well-mixed chain will

have low autocorrelation for sufficiently long lag intervals. Figure 8.4 displays the chain-by-

chain autocorrelation for the sample log-likelihood. It can be seen that a number of chains

still displayed nontrivial autocorrelation even across longer lag intervals. Figure 8.5 shows a
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single chain as a time series, and it becomes more clear that the proposal kernel is perhaps too

conservative in ∆ logL, ∆ logW , and depth offset. Increasing the variance in the proposal

kernel for these parameters could improve mixing, and thus the rate of convergence.
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Figure 8.4: Autocorrelation for the 14 chains’ log-likelihood values

Although tuning of the proposal kernel may help accelerate convergence, it is still possible

that our chains have indeed converged. A standard metric for convergence when multiple

chains can be compared is the Gelman-Rubin diagnostic R [51]. R is a measurement of the

extent to which the chains have converged to the same distribution. When R is close to 1,

and generally less than 1.1 or 1.2, the chains are all mixing around the same distribution,

presumably the posterior. Figure 8.6 shows a rolling plot of R for each sample parameter.

The scores all fall below 1.1 by 8000 samples. This is good evidence that our chains have

converged to the posterior. It is notable that ∆ logL, ∆ logW , and depth offset take longer

to cross the threshold of 1.1, providing further evidence that mixing in those parameters

could be improved.
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Figure 8.5: Time series for single chain. Depth offset, ∆ logL, and ∆ logW display nontrivial
autocorrelation.
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Figure 8.6: Cumulative Gelman-Rubin diagnostic scores for each sample parameter. At
around 8000 samples, all sample parameters had scores under 1.1, indicating convergence.
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8.3 Forward Model and Output

It is important to remember that our samples represent the posterior distribution for our

particular choice of parameterization of the latent space of possible earthquakes. Figure

8.7 shows the mean seafloor deformation produced by the Okada model, among the 168000

samples. This demonstrates that the rupture zone is, on average, quite large.
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Figure 8.7: Average computed seafloor deformation for posterior samples.

It is also worth considering the implied observation distributions. This is known as

the posterior predictive distribution. Figure 8.8 shows the model output for the posterior

samples, compared against the likelihood densities for each observation. Banda Neira and

Saparua provided the largest contribution to the likelihood, and we see that the posterior

samples broadly matched our interpretation of the observations there. The posterior samples

at Kulur and Ameth stand out as different from the likelihood, with waves smaller than our

interpretation of the accounts. However, this is acceptable, given that these accounts were

not specific, and we assigned wide distributions to them. Overall, the posterior distribution

is consistent with the observations recorded in our sources.
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Figure 8.8: Model output compared to likelihood densities (plotted in green). Arrival times
are in minutes, wave height and inundation length are in meters.
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8.4 Claim & Corroborating Evidence

The implied claim of our posterior distribution is this: the 1852 Banda Arc tsunami was

caused by a magnitude ∼8.8 megathrust earthquake centered near 4.5◦S, 131.5◦E. During

analysis, we discovered an item of corroborating evidence for this claim, in the form of the

Slab2 depth uncertainty data. The Slab2 model of the subduction zone is based on seismic

data that can be used to infer the interface geometry. The more earthquakes that have

occurred on a particular segment of a fault, the more certain we can be of the geometry.

Regions of uncertainty correspond to “seismic gaps”: fault segments that have been relatively

silent during the modern period of instrumental data. A seismic gap may represent a loca-

tion where hundreds of years of stress has accumulated, which eventually results in a large

earthquake when the fault slips and the stress is released [52]. While not all seismic gaps

turn out to be dangerous [53], they are still important to consider as possible sources for an

event such as the 1852 Banda Arc earthquake.

Both the Slab2 depth uncertainty map, and the underlying seismic dataset, demonstrate

the presence of a seismic gap in the region where our posterior distribution is concentrated

(see Figures 8.9 and 8.10). This can be viewed as evidence that supports the results of our

analysis.
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Figure 8.9: Seismicity of the Banda Arc compared to the average posterior seafloor defor-
mation. The plot on the left displays the frequency of earthquakes in the Banda Arc by
location. The average posterior earthquake is located within a seismic gap. Seismicity data
was smoothed using a Gaussian KDE.
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Figure 8.10: Posterior samples overlaid on Slab2 depth uncertainty map. Earthquake epi-
centers match with the Slab2 region of high uncertainty, which is derived from a seismic gap
there.
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Chapter 9. Conclusion

Probabilistic interpretation of anecdotal accounts appears to be a promising approach, inas-

much as it opens the door to using the tools of Bayesian inference. We have demonstrated

that it is feasible to express the problem of historical earthquake reconstruction in the

Bayesian framework and that the resulting problem can be made computationally tractable.

A priority for future work is to thoroughly validate our method. While we are encouraged

by the results for the 1852 Banda Arc tsunami, we intend to run similar analyses for modern

tsunamis for which the ground truth is known. Reconstructing events such as the 2004

Sumatra-Andaman tsunami and the 2011 Tōhoku tsunami would be a good test for our

method.

We intend to apply our method to a number of other Wichmann-catalog recorded events,

including the 1820 Makassar tsunami. Other events pose new challenges for our method.

For example, the 1820 Makassar tsunami does not have a definite fault of origin. Expanding

our method to handle the case of multiple candidate source faults will be important.

Other challenges are computational in nature. Despite having access to large-scale com-

puting power, our method still required roughly four months to reach just over 150,000 sam-

ples. We have so far been limited to slowly-converging random walk Metropolis-Hastings.

There are a number of more sophisticated MCMC sampling methods in existence, such as

Hamiltonian Monte Carlo. It will be non-trivial to adapt our method to make use of higher-

order samplers, as most require evaluation of the gradient of the forward model, something

which is not available in this setting.

Perhaps the most important ongoing work will be to make the results of our analysis

useful for seismic hazard mitigation. To this end, we plan on modeling a number of scenarios

that represent what would happen if the 1852 Banda Arc earthquake were to reoccur. The

ultimate justification for our work is in trying to better inform efforts to protect people who

live in harm’s way.
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